§ 5. Martingales

\$5.1 Conditional expectation

Let X be a r.v. on a prob. space (1, of, P) such that

 $E|X| < \infty$.

Let B = 7 be a sub-5-algebra. Then

$$\mu(A) = \int_{A} \chi d\rho, \quad A \in \beta$$

defines a signed measure on (Ω, β) and μ is absolutely continuous with respect to P, i.e. $P(A)=0 \Rightarrow \mu(A)=0$.

By the Radon-Nikodym Theorem, there is a function $g \in L^1(\Omega, \beta, P)$

such that

$$\mu(A) = \int_A q d\rho$$
, $A \in \beta$

Moreover, any other such function g' must coincide with g almost surely wrt μ .

Def. We use the notation E(X|S) for g, and call E(X|S) the conditional expectation of X with respect to β .

As an element of $L^{1}(\Omega, \mathcal{F}, P)$, $E(X|\mathcal{F})$ is completely characterized by the following two properties: (1) E(X|B) is B-measurable;

(2) $\int_{A} E(X|B)dP = \int_{A} XdP \quad \text{for all } A \in B.$

Example 5.1 Let $\beta = \{ \phi, E, E^c, \Omega \}$ with $E \in \mathcal{F}$. Then B is a finite sub-sigma algebra of F.

Let $X = 1_A$ with $A \in \mathcal{F}$. Let $g = E(1_A \mid \beta)$. Since g is g-measurable, it must be constant on E and E^c .

By property (2), $g(x) = \begin{cases} \int_{E} X dP / P(E^{c}) & \text{if } x \in E, \\ \int_{E^{c}} X dP / P(E^{c}) & \text{if } x \in E^{c}. \end{cases}$

Since X= 1/A, $\frac{P(A \cup E)}{P(E)}$ if xeE

if xeEc Thus, g(x) gives the prob. of the occurrence of A once we know to which element of of the point x belongs to.

Example 5.2 Similarly let $\beta = \sigma(\Omega_1, ..., \Omega_k)$ be the σ -algebra generated by a finite partition Ω_i , ..., Ω_k of Ω .

Then $E(X|S)(x) = \int_{\Omega_i} X d\rho / \rho(\Omega_i)$ if xe Qi.

The following properties of conditional expectations can be proved easily by using the Characterization by (i) and (ii):

Prop 5.3. (1) If $X \ge 0$ a.s., then $E(X|B) \ge 0$ a.s.

(2) E(aX + bY|B) = aE(X|B) + bE(Y|B) a.s. for $X, Y \in L^{1}$, a.b. E(X|B) + bE(Y|B) a.s. for $X, Y \in L^{1}$. (2) If X is β -measurable, then $E(X|\beta) = X$ a.s. (3) If X is β -measurable and $X \in L^{\infty}(\Omega, \mathcal{F}, P)$, then for each $Y \in L^{1}(\Omega, \mathcal{F}, P)$ $E(XY|\beta) = X E(Y|\beta) \text{ a.s.}$

> $(4) \quad E(E(X|\beta)) = EX.$ (5) If $\beta_2 \subset \beta_1$ then

 $E\left(E(X|\beta_1)|\beta_2\right) = E(X|\beta_2)$ a.s.

(6) If X is independent of B, then E(X|S) = E(X) a.s.

Let $\beta_2 \subset \beta_1$. Let $q = E(E(X|\beta_1)|\beta_2)$.

Clearly g is B2-measurable. Moreover, for any A ∈ B2

$$\int_{A} g \, dp = \int_{A} E(X|B_{i}) \, dp = \int_{A} X \, dp,$$

Where the second equality follows from the fact that $A \in \mathcal{B}_i$. Hence by the characterization of the conditional expectation

 $q = E(X|S_i).$

This proves (5).

To see (6), recall that X is independent of \$\beta\$, so X and \$1_B\$ are independent for each BE \$\beta\$

Hence
$$\int_{B} X dP = \int \mathcal{I}_{B} \cdot X dP = \int \mathcal{I}_{B}^{dp} \int X dP$$
$$= P(B) E(X).$$

$$=\int_{\mathcal{B}} E(X) dP$$

It follows that $E(X|\beta) = E(X)$ as.

Prop. 5.4. Suppose
$$X_n \to X$$
 a.s. and $|X_n| \le Y$ and $EY < \infty$.

Then $E(X_n \mid \beta) \to E(X \mid \beta)$ a.s.

Pf. Let
$$Z_n = \sup_{k \ge n} |X_k - X|$$
. Then $Z_n \searrow 0$ a.s. and $0 \le Z_n \le 2$?

Now
$$|E(X_n \mid \beta) - E(X \mid \beta)| = |E(X_n - X \mid \beta)|$$

$$\leq E(Z_n|\beta)$$
.

Since Z_n is non-increasing so is $E(Z_n|\beta)$.

$$E(Z) = \int Z dP \leq \int E(Z_n | \beta) dP$$

$$= E(Z_n) \rightarrow 0.$$
(by the DCT)

Hence
$$Z \equiv 0$$
 a.s.

It follows that
$$E(Z_n|\beta) \rightarrow o$$
 as, and thus
$$E(X_n|\beta) \rightarrow E(X|\beta). \quad \square$$

Prop 5.5 (Jensen inequality)

Let $G: \mathbb{R} \to \mathbb{R}$ be convex. Suppose that G(X) are integrable.

Then $\phi(E(X|B)) \leq E(\varphi(X)|B)$ a.s.

Pf. Since
$$\varphi$$
 is convex, it is known that $\varphi'(q+)$ exists at each $q \in \mathbb{R}$ and $\varphi(x) \geq \varphi'(q+)$ $(x-q) + \varphi(q)$ for all $x \in \mathbb{R}$.

Hence, we have

$$\varphi(x) = \sup_{q \in \mathbb{R}} \varphi'(q+)(x-q) + \varphi(q)$$
for all $x \in \mathbb{R}$

Notice that g'(q) exists and is continuous, except for at most countable many points. It follows that \exists a sequence (a_n) , (b_n)

in R such that

$$f(x) = \sup_{n} a_n x + b_n$$

for all $x \in \mathbb{R}$.

Now for fixed n,

$$\varphi(X) \geqslant a_n X + b_n$$

So
$$E(\varphi(x)|\beta) \ge a_n E(x|\beta) + b_n$$
 as

Hence
$$E(\varphi(x)|\beta) \ge \sup_{n} a_n E(x|\beta) + b_n \quad q_{n,s}$$

$$= \varphi(E(x|\beta)) \quad a_{n,s} \quad (by \quad (1)).$$

§ 5.2 Martingales and examples.

Def. Let (1, F, p) be a prob. space, and F = F2 = ... an increasing sequence of sub-s-algebras of F.

A sequence X_1, X_2, \cdots , of r.u.'s such that $E|X_n|<\infty$ is said to be a submartingale if E(Xn+1 | Fn) > Xn

a martingle if $E(X_{n+1}|\mathcal{F}_n) = X_n$ as

a supermartingale if

E(Xn+1 Fn) & Xn a.s.

Remark: . the word 'martingale' was formerly used for a certain betting system.

- If Xn is the fortune of a gambler after n plays,
 in case of a submartingale the game is favorable to the player;
- in case of a supermartingale, the game is unfavorable to the player.

Examples :

(a) Sums of independent v.v.'s of zero mean.

Let
$$S_n = X_1 + \dots + X_n$$
, where X_1, \dots, X_n, \dots are independent ru's with $E[X_n] < \infty$ and $E[X_n] = 0$.

Let
$$\mathcal{F}_n = \sigma(X_1, ..., X_n)$$

Then
$$E(S_{n+1} | \mathcal{F}_n) = E(S_n | \mathcal{F}_n) + E(X_{n+1} | \mathcal{F}_n)$$

$$= S_n + E(X_{n+1} | \mathcal{F}_n)$$
(since S_n is \mathcal{F}_n -measurable

(since
$$S_n$$
 is y_n - measurable
$$= S_n + E(X_{n+1}) \quad (S_n \in X_{n+1} \text{ is 1} \text{ independent}$$

$$= S_n$$
.

of I")

Let
$$X_1, X_2, \dots$$
 be non-negative independent rus with $E(X_n)=1$.

Let
$$M_n = X_1 \cdots X_n$$
.

Then for $n \ge 1$,

$$E(M_{n+1} \mid \mathcal{F}_n) = E(X_{n+1} \mid M_n \mid \mathcal{F}_n)$$

$$= M_n E(X_{n+1} \mid \mathcal{F}_n) \quad (since M_n is \mathcal{F}_n-measurable)$$

=
$$M_n E(X_{n+1} | \mathcal{F}_n)$$
 (since M_n is \mathcal{F}_n -measurable)
= $M_n E(X_{n+1}) = M_n$
 $f(S_n) = X_{n+1}$ and $f(X_n) = X_n$ are independent)

